Original Research

Radiographic Study of Humeral Stem in Shoulder Arthroplasty After Lesser Tuberosity Osteotomy or Subscapularis Tenotomy

Author and Disclosure Information

 

References

RADIOGRAPHIC DATA

There was no significant difference in preoperative HAD between the LTO and ST groups (9.5 ± 2.4 mm vs 10.9 ± 2.7 mm, P = .11). The immediate postoperative HAD was statistically significant between the LTO and ST groups (11.9 ± 3.7 mm vs 15.9 ± 4.5 mm, P = .005). There was as statistically significant difference noted in the final follow-up films between the LTO and ST groups (11.8 ± 3.2 mm vs 14.5 ± 3.9 mm, P = .025) (Table 2).

Table 2. Radiographic Data

Humeral Acromial Distance

LTO

ST

P-Value

Preoperative, mm

9.5

[2.4]

10.9

[2.7]

0.11

Postoperative, mm

11.9

[3.7]

15.9

[4.5]

0.005

Final follow-up, mm

11.8

[3.2]

14.5

[3.9]

0.025

Subsidence

LTO

ST

P-Value

Subsidence, mm

2.8

[3.1]

2.5

[3.1]

0.72

Subluxation Index

LTO

ST

P-Value

Preoperative, %

0.55

[0.06]

0.54

[0.07]

0.45

Postoperative, %

0.55

[0.09]

0.48

[0.05]

0.015

Lucent Lines

LTO

ST

P-Value

Lines >2 mm, %

0.00

0.08

0.51

Abbreviations: LTO, lesser tuberosity osteotomy; ST, subscapularis tenotomy.

There were no statistically significant differences found in subsidence between LTO and ST groups at final follow-up (2.8 mm ± 3.1 mm vs 2.5 mm ± 3.1 mm, P = .72) (Table 2). No statistically significant difference was noted in the subluxation index between the LTO and ST groups (0.55% ± .06% vs 0.54% ± 0.07%, P = .45), but there was a statistically significant difference noted postoperatively between the LTO and ST groups (0.55% ± 0.09% vs .48% ± 0.05%, P = .015) (Table 2).

Two stems were noted to have lucent lines >2 mm, both within the ST cohort. Each had 1 stem zone >2 mm, 1 in zone 7, and 1 in zone 4. No statistically significant difference was identified between the LTO and ST groups (0/15 vs 2/24, P = .51) (Table 2).

FUNCTIONAL OUTCOMES

Study patients were evaluated using functional outcome scores, including the Constant, WOOS, and DASH scores (Table 3).

Table 3. Functional Data
LTOSTP-Value
WOOS index93.3[5.3]81.5[20.8]0.013
DASH score8.4[6.6]13.8[4.9]0.13
Constant score83.3[9.1]81.8[10.1]0.64

Abbreviations: DASH, disabilities of the arm, shoulder and hand; WOOS, Western Ontario Osteoarthritis of the Shoulder.

No statistically significant differences were noted in the DASH scores (8.4 ± 6.6 vs 13.8 ± 4.9, P = .13) or Constant scores (83.3 ± 9.1 vs 81.8 ± 10.1, P = .64) between the LTO and ST cohorts. There was a statistically significant difference between the WOOS scores (93.3 ± 5.3 vs 81.5 ± 20.8, P = .013). Because separate radiographic reviews were done by 3 independent personnel at 3 different times, it was important to ensure agreement among the reviewers. This was compared using the intraclass correlation coefficients. In the statistical analysis completed, the intraclass coefficients showed the 3 reviewers agreed with each other throughout the radiographic analysis (Table 4).

Table 4. Testing Agreement: ICC
ICC CI, 2.5%CI, 97.5%
HADPreoperative0.44510.22020.6443
Postoperative0.69970.48360.834
Final follow-up0.55750.35920.7218
Subsidence 0.68630.53490.807
SIPreoperative0.30870.10610.5213
Final follow-up0.53640.2990.7186

Abbreviations: CI, confidence interval; HAD, humeral acromial distance; ICC, intraclass correlation coefficient; SI, subluxation index.

DISCUSSION

At final follow-up, we identified no statistically significant difference between the LTO and ST patients in subsidence, lucent lines >2 mm, or functional outcomes (Constant and DASH scores) in patients who underwent TSA with the same proximal collar press-fit humeral stem. In regard to the functional outcome scores, although the WOOS score was statistically significant (P = .013) between the LTO and ST cohorts, we do not feel that this is clinically relevant because it does not reach the minimal clinically important difference threshold of 15 points.8

A statistically significant difference was noted in postoperative subluxation index but was not clinically relevant, because the values between the LTO and ST groups (0.55 vs 0.48) still showed a centered humeral head. Gerber and colleagues3 discussed using a value of 0.65 as a measure of posterior humeral head subluxation, whereas Walch and colleagues12 defined posterior humeral head subluxation as a value >0.55. On the basis of these numbers, the values obtained in this study demonstrated that the postoperative values were still centered on the glenoid, and therefore were not clinically significant.3,12

Continue to: In regard to HAD, there...

Pages

Recommended Reading

Proximal Humerus Fracture 3-D Modeling
MDedge Surgery
Nonoperative Treatment of Closed Extra-Articular Distal Humeral Shaft Fractures in Adults: A Comparison of Functional Bracing and Above-Elbow Casting
MDedge Surgery
Convertible Glenoid Components Facilitate Revisions to Reverse Shoulder Arthroplasty Easier: Retrospective Review of 13 Cases
MDedge Surgery
Humeral Bone Loss in Revision Shoulder Arthroplasty
MDedge Surgery
Patient-Specific Guides/Instrumentation in Shoulder Arthroplasty
MDedge Surgery
Patient-Specific Implants in Severe Glenoid Bone Loss
MDedge Surgery
Treating Humeral Bone Loss in Shoulder Arthroplasty: Modular Humeral Components or Allografts
MDedge Surgery
Use of a Novel Magnesium-Based Resorbable Bone Cement for Augmenting Anchor and Tendon Fixation
MDedge Surgery
Glenoid Bone Loss in Reverse Shoulder Arthroplasty Treated with Bone Graft Techniques
MDedge Surgery
Managing Glenoid Bone Deficiency—The Augment Experience in Anatomic and Reverse Shoulder Arthroplasty
MDedge Surgery