Even more challenging is that we still do not know how to combine multiple genetic factors to develop a composite risk assessment, nor do we know how to combine a genetic risk assessment with traditional cardiac risk predications. Most models assume complete independence and simply multiply the odds ratio of each identified variant. However, this approach has not been validated and could yield falsely elevated or diminished risk scores.
The true power of genetic association studies to identify risk factors for common diseases may in fact not lie in better identification of those at increased risk. Rather, elucidation of the biological basis of such associations holds the promise of improving our understanding and eventual treatment of the underlying disease process.
So, how should a physician deal with the availability of cardiac risk assessment tests? Clearly, these are best suited for people who consider themselves early adopters. The 9p21 marker appears to be the most clinically relevant marker at this point. Indeed, the risk associated with this genetic variant appears highest in younger individuals. So, perhaps it might be appropriate to consider obtaining such information in a person under age 55 years who needs further encouragement to modify his or her cardiac risks.
Ideally, patients and their providers will engage in a discussion of the potential risks and benefits prior to any testing. Then, in the truest and oldest model of personalized medicine, they can decide together if pursuing such testing is appropriate on a case-by-case basis.