References1
1 K.W. Wyrwich, M. Bullinger and N. Aaronson et al., Estimating clinically significant differences in quality of life outcomes, Qual Life Res 14 (2005), pp. 285–295. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (119)
2 S.D. Mathias, S.K. Gao, M. Rutstein, C.F. Snyder, A.W. Wu and D. Cella, Evaluating clinically meaningful change on the ITP-PAQ: preliminary estimates of minimal important differences, Curr Med Res Opin 25 (2) (2009), pp. 375–383. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (4)
3 K.J. Yost, M.V. Sorensen, E.A. Hahn, G.A. Glendenning, A. Gnanasakthy and D. Cella, Using multiple anchor- and distribution-based estimates to evaluate clinically meaningful change on the Functional Assessment of Cancer Therapy-Biologic Response Modifiers (FACT-BRM) instrument, Value Health 8 (2) (2005), pp. 117–127. Abstract |
4 R.D. Hays and J.M. Woolley, The concept of clinically meaningful difference in health-related quality-of-life research: How meaningful is it?, Pharmacoeconomics 18 (5) (2000), pp. 419–423. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (177)
5 R.L. Daut, C.S. Cleeland and R.C. Flanery, Development of the Wisconsin Brief Pain Questionnaire to assess pain in cancer and other diseases, Pain 17 (2) (1983), pp. 197–210. Abstract |
6 C. Cleeland, Brief Pain Inventory User Guide, University of Texas M. D. Anderson Cancer Center, Houston (2009).
7 R.H. Dworkin, D.C. Turk and J.T. Farrar et al., Core outcome measures for chronic pain clinical trials: IMMPACT recommendations, Pain 113 (1–2) (2005), pp. 9–19. Article |
8 U.S. Department of Health and Human Services Food and Drug Administration (FDA), Guidance for Industry: Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims, FDA, Silver Spring, MD (2009).
9 M.M. Oken, R.H. Creech and D.C. Tormey et al., Toxicity and response criteria of the Eastern Cooperative Oncology Group, Am J Clin Oncol 5 (6) (1982), pp. 649–655. View Record in Scopus | Cited By in Scopus (1968)
10 M.J. Brady, D.F. Cella, F. Mo and A.E. Bonomi et al., Reliability and validity of the Functional Assessment of Cancer Therapy–Breast Cancer Quality of Life instrument, J Clin Oncol 15 (1997), pp. 974–986. View Record in Scopus | Cited By in Scopus (360)
11 R.D. Crosby, R.L. Kolotkin and G.R. Williams, Defining clinically meaningful change in health-related quality of life, J Clin Epidemiol 56 (5) (2003), pp. 395–407. Article |
12 D. Revicki, R.D. Hays, D. Cella and J. Sloan, Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes, J Clin Epidemiol 61 (2) (2008), pp. 102–109. Article |
13 D. Cella, E.A. Hahn and K. Dineen, Meaningful change in cancer-specific quality of life scores: differences between improvement and worsening, Qual Life Res 11 (3) (2002), pp. 207–221. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (137)
14 D.T. Eton, D. Cella and K.J. Yost et al., A combination of distribution- and anchor-based approaches determined the minimally important differences (MIDs) for four endpoints in a breast cancer scale, J Clin Epidemiol 57 (2004), pp. 898–910. Article |
15 S. Weibe, S. Matijevic, M. Eliasziw and P.A. Derry, Clinically important change in quality of life in epilepsy, J Neurol Neurosurg Psychiatry 73 (2002), pp. 116–120.
16 K.L. Miller, J.G. Walt and D.R. Mink et al., Minimal clinically important difference for the ocular surface disease index, Arch Ophthalmol 128 (1) (2010), pp. 94–101. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (10)
17 K.W. Wyrwich, W.M. Tierney and F.D. Wolinsky, Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life, J Clin Epidemiol 52 (9) (1999), pp. 861–873. Article |
18 F.D. Wolinsky, G.J. Wan and W.M. Tierney, Changes in the SF-36 in 12 months in a clinical sample of disadvantaged older adults, Med Care 36 (11) (1998), pp. 1589–1598. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (33)
19 J. Cohen, Statistical Power Analysis for the Behavioral Sciences (2nd ed.), Lawrence Erlbaum, Hillsdale, NJ (1988).
20 G.H. Guyatt, C. Bombardier and P.X. Tugwell, Measuring disease-specific quality of life in clinical trials, CMAJ 134 (8) (1986), pp. 889–895. View Record in Scopus | Cited By in Scopus (324)
21 G.R. Norman, P. Stratford and G. Regehr, Methodological problems in the retrospective computation of responsiveness to change: the lesson of Cronbach, J Clin Epidemiol 50 (8) (1997), pp. 869–879. Article |
22 A. Stopeck, J. Body and Y. Fujiwara et al., Denosumab versus zoledronic acid for the treatment of breast cancer patients with bone metastases: results of a randomized phase 3 study, Eur J Cancer Suppl 7 (2009), p. 2. Abstract |
23 A.S. Pickard, M.P. Neary and D. Cella, Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer, Health Qual Life Outcomes 5 (2007), p. 70. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (17)
24 R.H. Dworkin, D.C. Turk and K.W. Wyrwich et al., Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations, J Pain 9 (2) (2008), pp. 105–121. Article |